From the Bohr Model to the Standard Model Qualitative aspects of the Standard Model

Insights and puzzles in particle physics

H. Leutwyler University of Bern

C. V. Raman Lecture Indian Association for the Cultivation of Science Kolkata, India, Dec. 10, 2013

Plan of talk

- During the last 100 years, a remarkable development took place in our understanding of particle physics.
- I plan to briefly review this development and discuss some qualitative features which gradually emerged.
- In particular, I intend to explain the prominent role played by gauge fields in our understanding of the laws of nature.
- On the way, I will draw your attention to some of the puzzles to which a solution is not in sight.

From the Bohr Model to the Standard Model Qualitative aspects of the Standard Model

1 From the Bohr Model to the Standard Model

2 Qualitative aspects of the Standard Model

- **→** → **→**

Atoms

- Bohr's model of the hydrogen atom \Rightarrow quantum theory
- This development eventually led to a very thorough understanding of the structure of atoms, molecules, solids, ...
- Constituents of matter in that framework: nuclei + electrons
- Crucial properties of the constituents: mass, charge In atomic physics, the size and structure of the nuclei, magnetic moments etc. only matter at high precision

Neutrino

- The distribution of the decay products observed in β decay was puzzling. Is the energy not conserved ?
- The observed spectrum can be explained if a yet unknown particle is emitted together with the electron.
 Must be neutral and escape detection.
- Experimental discovery Reines and Cowan 1956

From the Bohr Model to the Standard Model

Qualitative aspects of the Standard Model

Reprisal - Holocopris of Par 2173 Atostrifi/15.12.5

Offener Brief as die Grunpe der Hedinaktives bei der Gezwereine-Temmig as Tühingen-

Abechrift

Physikalisates Institut der Sidg. Technischen Hochschuls Sirich

Mirish, L. Des. 1930 Gloriastrasse

Lisba Badioaktive Damen und Herven,

We der Gesetrager timer Tolles, der ich hichrolit werben bitte, Die der Gesetragen eine Schweiter aus der Schweiter der Schweiter alle Schweiter auf einer verwerkfalten bereifen bertinderlichen beschgebertung auf einer verwerkfalten bereigen eine Schweiter auf der Schweiter auf einer verwerkfalten bereien eine Schweiter auf der Schweiter auf einer Verwerkfalten bereibertung eine Schweiter aus einer vill, is der Schweiter auf beiter wertung eine Schweiter aus einer vill, is der Schweiter aus der Schweiter aus einer ville, is der Schweiter aus der Schweiter aus einer bereiter auf der Schweiter aus der Schweiter aus einer schweiter alle Schweiter aus der Schweiter alle Schweiter aus einer Schweiter aus schweiter beschweiter alle Schweiter aus einer Schweiter versichter beschweiter alle Schweiter aus einer Schweiter aus Schweiter Schweiter aus Schweiter aus schweiter versichter alle Schweiter Bertragen versichter aus Schweiter aus schweiter versichter alle Schweiter Bertragen versichter alle Schweiter alle Schweiter versichter alle Schweiter Schweiter alle Schweiter alle Schweiter alle Schweiter versichter alle Schweiter Schweiter alle Schweiter alle Schweiter alle Schweiter versichter alle Schweiter Schweiter versichter schweiter versichter alle Schweiter versichter alle Schweiter versichter versichter versichter alle Schweiter versichter v

We head is state with the form, which fifth an fit of the form of

In traves such weal'sing show match, stones that first likes an public new and works with aret writerensered in an insteh, likes indication, and the Prage, wis as us des constructed an isoformets since solution butters similarly, wish desse in advectables oder wise blank prissaves involving agreeming to be the winds, wis sin assembly with

The gales are, size wells knowned violation from wembereds many devices of the second second

ges. W. Pauli

Frederick REINES and dyde COWAN Box 1663, LOS ALAMOS, New Merico Thanks for message. Everything cours to him who know how to vait.

< 日 > < 同 > < 三 > < 三 >

Leptons

In today's terminology, Pauli predicted the electron neutrino, $\nu_e.$ Both the electron and the ν_e have relatives, **leptons**. Altogether 6 leptons, 3 families:

1897	е	$ u_{e}$	1956
1936	${m \mu}$	$ u_{\mu}$	1962
1975	au	$\nu_{ au}$	2000

Why 6 different "flavours" of leptons ? Who ordered the muon ?

Rabi ~ 1936

Neutron

- Discovery of the neutron
- \Rightarrow Nuclei = $\mathbf{p} + \mathbf{n}$

Simplified the picture considerably:

 \Rightarrow Matter built up from only 3 types of constituents: $\mathbf{e}, \mathbf{p}, \mathbf{n}$

Neutron

- Discovery of the neutron
- \Rightarrow Nuclei = $\mathbf{p} + \mathbf{n}$

Simplified the picture considerably:

- \Rightarrow Matter built up from only 3 types of constituents: $\mathbf{e}, \mathbf{p}, \mathbf{n}$
 - What binds the protons and neutrons together ?
 Electromagnetic forces arise from photon exchange.
 Photon is a massless particle ⇒ long range force
 Exchange of massive particles ⇒ short range force

$$\begin{split} \mathsf{V}_{\text{em}} \propto \frac{1}{r} & \mathsf{V}_{\text{strong}} \propto \frac{1}{r} \; e^{-\frac{r}{r_0}} & \mathsf{r}_{\scriptscriptstyle 0} = \frac{\hbar}{mc} \\ \text{long range} & \text{short range} \end{split}$$

Stueckelberg, Yukawa \sim 1934

Chadwick 1932

π -meson

• Range of nuclear force:

$$\mathbf{r}_0 = \frac{\mathbf{h}}{\mathbf{mc}} = O(10^{-15} \mathrm{m}) \implies \mathbf{mc}^2 = O(200 \mathrm{MeV}).$$

• Yukawa predicted a spinless particle which strongly interacts with p and n and has a mass around $mc^2\simeq$ 100 MeV.

- A 3 N

π -meson

• Range of nuclear force:

$$\mathbf{r}_0 = rac{\mathbf{h}}{\mathbf{mc}} = O(10^{-15} \mathrm{m}) \qquad \Rightarrow \qquad \mathbf{mc}^2 = O(200 \text{ MeV}).$$

- Yukawa predicted a spinless particle which strongly interacts with ${\bf p}$ and ${\bf n}$ and has a mass around ${\bf mc}^2\simeq 100$ MeV.
- Discovery of the π -meson: $\mathbf{m}_{\pi}\mathbf{c}^2 = 140$ MeV Powell 1947
- Around the same time, many other strongly interacting particles where discovered: **K**-mesons, hyperons, excited states of the nucleon, ...

From the Bohr Model to the Standard Model Qualitative aspects of the Standard Model

Refinement of the Yukawa potential

- Nonrelativistic potential models: Paris potential, Bonn potential, shell model of the nucleus
- ⇒ Nuclear structure, nuclear reactors, processes responsible for the energy production in the sun, α -decay, ... were well understood already fifty years ago.

Refinement of the Yukawa potential

- Nonrelativistic potential models: Paris potential, Bonn potential, shell model of the nucleus
- ⇒ Nuclear structure, nuclear reactors, processes responsible for the energy production in the sun, α -decay, ... were well understood already fifty years ago.
 - These phenomena concern interactions among nucleons with small relative velocities. Experimentally, it had become possible to explore relativistic collisions, but a description in terms of nonrelativistic potentials cannot cover these.

Refinement of the Yukawa potential

- Nonrelativistic potential models: Paris potential, Bonn potential, shell model of the nucleus
- ⇒ Nuclear structure, nuclear reactors, processes responsible for the energy production in the sun, α -decay, ... were well understood already fifty years ago.
 - These phenomena concern interactions among nucleons with small relative velocities. Experimentally, it had become possible to explore relativistic collisions, but a description in terms of nonrelativistic potentials cannot cover these.
 - Many attempts at formulating a theory of the strong interaction based on elementary fields for baryons and mesons were undertaken, Yukawa interaction for the strong forces, perturbation theory with coupling constants of order 1, ...

uncountable PhD theses 1945 -1965

> <同> < 三> < 三>

Meson- und Hyperon Massendifferenzen

von N. Straumann

Institut für Theoretische Physik, Universität Zürich

(25. XI. 1961)

Summary. The mass differences of the various meson- and hyperon charge multiplets are calculated (π -, K-mesons, Σ , Ξ -hyperons). It is assumed that the theoretical masses of a charge multiplet are equal and that the experimental mass differences rest on self energy effects. The self energies are calculated on the basis of field theory to the order e^2 and $e^2 f^2$ (f =coupling constant of the strong interactions). The method is similar to the calculation of the nucleon mass difference by O'RAI-FEARTAIGH, TERREAUX and SREDNIAWA¹). We use the Prentki-d'Espagnat coupling. For π -mesons the purely electromagnetic self energy is dominant. For K-mesons this is smaller by a factor 3. The $e^2/2$ -effect is about equal for both particles and has the opposite sign of the e^2 -effect. Quantitatively, for a cut-off K_0 = nucleon mass, it is still too small by a factor 3-5 to overcompensate the purely electromagnetic self energy but it increases $\sim K_0^5$ (compared with $\sim K_0^2$ for the e²-effect). The correct mass difference could be obtained for $K_0 \sim 1.6 m_N$, which, however, is inconsistent with the quasistatic approximations used. – For the Σ 's the π -interactions give no splitting of Σ^+ and Σ^- as a group theoretical argument shows. The K interactions yield a contribution much too small. For the Ξ 's the π -interactions give the same result as for nucleons if one assumes global symmetry. The K-inter-actions contribute very little.

The connextion with other attempts based on dispersion relations and the experimental form factors of the nucleons is discussed.

Quantum field theory versus S-matrix theory

- Absolutely nothing worked even halfway, beyond general principles like Lorentz invariance, causality, unitarity
- \Rightarrow analyticity, dispersion relations, CPT theorem, spin + statistics
 - There was considerable progress in renormalization theory, but faith in quantum field theory was in decline, even concerning QED (Landau-pole).
 - Many people doubted that the strong interaction could at all be described by means of a local quantum field theory.
 - Replace quantum field theory by S-matrix theory ? Heated debates Pietschmann, Eur. Phys. J. H36 (2011) 75

Regge poles

Veneziano model 1968

(人間) ト く ヨ ト く ヨ ト

Fifty years ago, the quantum field theory of the strong interaction consisted of a collection of beliefs, prejudices and assumptions. Only very few of these survived.

Quarks

- The pattern of the many strongly interacting particles observed by 1964 can qualitatively be understood with the quark model.
 Gell-Mann, Zweig 1964
- Three constituents of spin $\frac{1}{2}$ are needed: $\mathbf{u}, \mathbf{d}, \mathbf{s}$
- Baryons (protons, neutrons, hyperons ...) contain 3 quarks

 $p=uud \qquad n=udd \qquad \Sigma^+=uus \qquad \Xi^0=uss$

- Mesons consist of a quark and an antiquark:
 - $\pi^+ = \mathbf{u}\overline{\mathbf{d}} \qquad \mathbf{K}^+ = \mathbf{u}\overline{\mathbf{s}} \qquad \rho^+ = \mathbf{u}\overline{\mathbf{d}}, \dots$
- \Rightarrow Prediction: $\Omega^- = sss$

Gell-Mann 1962

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Experimental discovery: Brookhaven 1964

Heavy quarks

• Altogether 6 quark flavours are needed to account for all of the observed mesons and baryons. Also come in 3 families: pattern is similar to the one of the leptons.

quarks		leptons					
1964	u	d	1964	1897	е	$ u_{ m e}$	1956
1974*	С	s	1964	1936	μ	$ u_{\mu}$	1962
1995	t	b	1977	1975	au	$\nu_{ au}$	2000

1974^{*} November revolution (discovery of the J/ ψ)

Colour

- Quarks carry an internal quantum number
- Greenberg had introduced an internal degree of freedom of this type in 1964, referring to this as "parastatistics".
- In 1965, Bogolubov, Struminsky & Tavkhelidze, Han & Nambu and Miyamoto independently pointed out that some of the problems encountered in the quark model disappear if the u, d and s quarks occur in 3 states, "three-triplet model".
- Today, the new quantum number is called **colour**. Gell-Mann

first family	u	u	u	d	d	d	е	$ u_{e} $
second family	С	С	С	S	s	S	${m \mu}$	$ u_{\mu}$
third family	t	t	t	b	b	b	au	$ u_{ au}$

Where are the quarks ?

• The quark model offers a remarkably simple and successful picture, explains the observed pattern of energy levels – but

why do the quarks not show up in experiment ?

⇒ The existence of quarks was considered doubtful. "Such particles [quarks] presumably are not real but we may use them in our field theory anyway ..."

```
Gell-Mann, Physics I (1964) 63
```

- Quarks were treated like the veal used to prepare a pheasant in the royal french cuisine: the pheasant was baked between two slices of veal, which were then discarded (or left for the less royal members of the court).
- ⇒ Conceptual basis of such a cuisine ?

Standard Model

Our understanding of the laws of nature made remarkable progress in the 8 years between the discovery of the quark model (1964) and the discovery of Quantum Chromodynamics (1972).

Standard Model

All of the known forces except gravity are generated by **gauge fields**.

Gauge fields

- Prototype: electromagnetic field. Maxwell 1865
 Survived relativity and guantum theory, unharmed.
- ⇒ Quantum Electrodynamics, QED
 - field picture: \vec{E}, \vec{B} particle picture: γ photon Source of the field: electric charge.
 - Key property: QED has a local symmetry, gauge invariance. Symmetry group: U(1)
 QED is the gauge field theory of U(1)

⇒ The symmetry completely fixes the e.m. interaction in terms of $\frac{e^2}{4\pi} = \frac{1}{137.035\,999\,074\,(44)}$ Sommerfeld 1916

⇒ The e.m. interaction is understood, except for this mysterious number, which has resisted explanation for almost a century.

◆ 同 ▶ → (目 ▶

Generalization

- The symmetry group U(1) can be replaced by a larger group, for instance SU(2) or SU(3). Yang & Mills 1954
- Gauge invariance then requires the occurrence of more than one gauge field: 3 in the case of SU(2), 8 for SU(3).
- Standard Model: the interactions among the constituents of matter are generated by three distinct gauge fields.

interaction	group	dim.	particles	source	coupling
electromagnetic	U(1)	1	γ	charge	е
weak	SU(2)	3	W+ W- Z	flavour	\mathbf{g}_{w}
strong	SU(3)	8	gluons	colour	g s

• Alchemist sign for Standard Model: $SU(3) \times SU(2) \times U(1)$

From the Bohr Model to the Standard Model Qualitative aspects of the Standard Model

Gauge field interactions

э

The Standard Model is a miracle

• Since a long time, we know that the microscopic world is governed by three types of interaction:

electromagnetic, weak, strong

- These have qualitatively very different properties.
 - strong \simeq weak ??
 - $\frac{1}{r}$ potential describes an interaction of long range strong and weak interactions are of short range !
 - Photons can be seen by eye, gluons not,

etc. etc. etc.

Why are the three interactions so different ?

The behaviour of the interactions at long distance differs

- Photons do not have charge, but gluons have colour.
 - Force between two electrons falls off with the distance.
 - Force between two quarks does not fall off.

charge is free, but colour is confined.

- 2 In addition to the gauge fields, there is a Higgs field.
- \Rightarrow Suppresses the weak interaction at long distance.

What makes the difference between QED and QCD ?

- Photons do not have charge.
- Gluons do have colour.
- ⇒ The e.m. and strong interactions behave differently at long distance.
 - Mathematical reason for the difference:
 - The gauge group of Quantum Electrodynamics is U(1)
 U(1) is abelian: x₁ · x₂ = x₂ · x₁
 - The gauge group of Quantum Chromodynamcs is SU(3) SU(3) is not abelian: x₁ ⋅ x₂ ≠ x₂ ⋅ x₁

Compare structure of leptons and quarks

vacuum shields charge

vacuum amplifies colour

⇒ The electromagnetic and strong interactions polarize the vacuum very differently. From the Bohr Model to the Standard Model Qualitative aspects of the Standard Model

Comparison with gravity

- source of gravitational field: energy gravitational field <u>does</u> carry energy
- source of gluon field: colour gluon field <u>does</u> carry colour

Consequence of shielding/amplification

- Vacuum reduces electric field of a charged source. Vacuum amplifies gluonic field of a coloured source.
- The difference has dramatic consequences: although the Lagrangians of QED and QCD are very similar, the properties of the electromagnetic and strong interactions are totally different.
- Field energy surrounding a charged particle is finite.
- \Rightarrow charged particles can live alone.
 - Field energy surrounding isolated quark $= \infty$ only colourless states have finite energy.
- ⇒ colour is confined.
 - *A* analytic proof that QCD does confine colour.

 Very good evidence from numerical simulations on a lattice.

・ 同・ ・ ヨ・

Lattice approach to quantum field theory

- Quantum field theories can be approximated by the quantum mechanics of a finite number of degrees of freedom.
- The space-time continuum is replaced by a lattice of points.
- The remarkable progress achieved in the last couple of years allows to accurately calculate the masses of the lightest mesons and baryons from lattice versions of QCD.
- ⇒ Provides a very thorough check of the claim that the quarks are bound together with a nonabelian gauge field.

Force between colourless objects

- nuclear forces = van der Waals forces of QCD.
- At long distance and disregarding the e.m. interaction, the force between two nucleons is dominated by the exchange of the lightest strongly interacting particle: the π-meson.

 \Rightarrow Yukawa formula valid at long distance: $r_0 = \frac{\hbar}{m_{\pi}c} \checkmark$

Higgs mechanism

Higgs	independently	1964
Brout & Englert	discovered the	
Hagen, Guralnik & Kibble	Higgs mechanism	

- scalar field ↔ particle without spin Higgs field ↔ Higgs particle
- Higgs field may pick up a vacuum expectation value.
 Particle picture: vacuum = condensate of Higgs particles.
- Particles that interact with the Higgs particles (in particular also gauge particles) feel the presence of this medium.

From the Bohr Model to the Standard Model Qualitative aspects of the Standard Model

Penetration depth, range of interaction

- Waves with $\omega < \omega_0$ cannot propagate.
- Penetration depth for low frequencies: $\mathbf{r}_0 = \frac{\mathbf{c}}{\omega_0} = \frac{\mathbf{n}}{\mathbf{mc}}$
 - Exchange of massless particles: $V \propto \frac{1}{2}$
 - Exchange of massive particles: $V\propto \frac{e^{-\frac{1}{r_0}}}{r}$

Simplest example

- Suppose there is a charged Higgs field
- Suppose that this field picks up a vacuum expectation value
- Electromagnetic waves interact with the condensate
- \Rightarrow Photons pick up mass
- \Rightarrow Electromagnetic interaction ceases to be of long range
- \Rightarrow Disagrees with observation
- \Rightarrow A charged Higgs field does not exist

From the Bohr Model to the Standard Model Qualitative aspects of the Standard Model

Gauge field theory of the weak interaction

The properties of the weak interaction can be understood if

 (1) there is an SU(2) gauge field;
 (2) there is an SU(2) doublet of Higgs fields (4 real fields).
 Glashow, Salam, Weinberg 1967

 \Rightarrow The SU(2) gauge particles {W⁺, W⁻, Z} pick up mass.

Gauge field theory of the weak interaction

- The properties of the weak interaction can be understood if

 there is an SU(2) gauge field;
 there is an SU(2) doublet of Higgs fields (4 real fields).
 Glashow, Salam, Weinberg 1967
- \Rightarrow The SU(2) gauge particles {W⁺, W⁻, Z} pick up mass.
 - Experimental discovery UA1 & UA2 at CERN SPS 1983

Gauge field theory of the weak interaction

- The properties of the weak interaction can be understood if

 there is an SU(2) gauge field;
 there is an SU(2) doublet of Higgs fields (4 real fields).
 Glashow, Salam, Weinberg 1967
- \Rightarrow The SU(2) gauge particles {W⁺, W⁻, Z} pick up mass.
 - Experimental discovery UA1 & UA2 at CERN SPS 1983
 - Gauge particles have only two polarization states. $\{W^+, W^-, Z\}$ have three, particles of spin 1.
 - Three of the four Higgs particles are eaten up. The fourth survives.

くほし くほし くほし

Gauge field theory of the weak interaction

- The properties of the weak interaction can be understood if

 there is an SU(2) gauge field;
 there is an SU(2) doublet of Higgs fields (4 real fields).

 Glashow, Salam, Weinberg 1967
- \Rightarrow The SU(2) gauge particles {W⁺, W⁻, Z} pick up mass.
 - Experimental discovery UA1 & UA2 at CERN SPS 1983
 - Gauge particles have only two polarization states. $\{W^+, W^-, Z\}$ have three, particles of spin 1.
 - Three of the four Higgs particles are eaten up. The fourth survives.
 - Experimental discovery

ATLAS & CMS at CERN LHC 2012

Consequence for strength of weak interaction

• Strength of the interaction is reduced:

$$\frac{g_{\scriptscriptstyle W}^2}{4\pi r} \, \Rightarrow \, \frac{g_{\scriptscriptstyle W}^2}{4\pi r} \cdot e^{-\frac{r}{r_0}} \qquad r_0 = \frac{\hbar}{m_{\scriptscriptstyle W}c}$$

• The W-particles interact vigorously with the Higgs condensate.

 \Rightarrow m_W is large: m_W = 85.673 \pm 0.016 m_{proton} m_W > m_{Fe}

Consequence for strength of weak interaction

• Strength of the interaction is reduced:

$$\frac{g_{\scriptscriptstyle W}^2}{4\pi r} \, \Rightarrow \, \frac{g_{\scriptscriptstyle W}^2}{4\pi r} \cdot e^{-\frac{r}{r_0}} \qquad r_0 = \frac{\hbar}{m_{\scriptscriptstyle W}c}$$

• The W-particles interact vigorously with the Higgs condensate.

- \Rightarrow m_W is large: m_W = 85.673 \pm 0.016 m_{proton} m_W > m_{Fe}
- \Rightarrow Penetration depth of the weak interaction is small:

$$\mathbf{r_0} = \frac{\mathbf{h}}{\mathbf{m}_{\mathrm{W}}\mathbf{c}} \simeq 2.5 \cdot 10^{-18} \mathrm{~m}$$

- \Rightarrow Weak interaction is of very short range.
 - Effective strength at low energies:

$$\int d^3 r \; \frac{g_w^2}{4\pi r} \cdot e^{-\frac{r}{r_0}} \; = \; g_w^2 r_0^2$$

 \Rightarrow At low energies, the weak interaction is weak.

From the Bohr Model to the Standard Model Qualitative aspects of the Standard Model

Transparency of the vacuum

vacuum = condensate of Higgs particles.

- The Higgs particles do not carry charge.
- \Rightarrow Photons do not notice these.
- \Rightarrow Vacuum is transparent for photons.

Transparency of the vacuum

vacuum = condensate of Higgs particles.

- The Higgs particles do not carry charge.
- \Rightarrow Photons do not notice these.
- \Rightarrow Vacuum is transparent for photons.
 - The Higgs particles do not carry colour.
- \Rightarrow Gluons do not notice these.
- \Rightarrow Vacuum is transparent for gluons.

Transparency of the vacuum

vacuum = condensate of Higgs particles.

- The Higgs particles do not carry charge.
- \Rightarrow Photons do not notice these.
- \Rightarrow Vacuum is transparent for photons.
 - The Higgs particles do not carry colour.
- \Rightarrow Gluons do not notice these.
- \Rightarrow Vacuum is transparent for gluons.
 - The Higgs particles do carry flavour.
- ⇒ W,Z do take notice.
- \Rightarrow W,Z-waves of low frequency cannot propagate.
- \Rightarrow For such waves, the vacuum is opaque.

Masses of the leptons and quarks

- The leptons and quarks also interact with the condensate.
- \Rightarrow pick up mass.
 - Size of the lepton and quark masses is determined by the strength of their interaction with the Higgs fields.
 - Unlike for the gauge particles, the symmetries of the Standard Model do not determine the strength of this interaction.
 - Pattern of lepton and quark masses is bizarre: ${\rm mc}^2$ ranges from $\sim 10^{-2}$ eV to $\sim 10^{11}$ eV.

Masses of the leptons and quarks

- The leptons and quarks also interact with the condensate.
- ⇒ pick up mass.
 - Size of the lepton and quark masses is determined by the strength of their interaction with the Higgs fields.
 - Unlike for the gauge particles, the symmetries of the Standard Model do not determine the strength of this interaction.
 - Pattern of lepton and quark masses is bizarre: mc^2 ranges from $\sim 10^{-2}$ eV to $\sim 10^{11}$ eV.
 - The electron happens to pick up only little mass.

$$\mathsf{a}_{\mathsf{Bohr}} = \frac{4\pi}{\mathsf{e}^2} \cdot \frac{\hbar}{\mathsf{m}_\mathsf{e}\mathsf{c}}$$

 \Rightarrow Bohr radius is much larger than the radius of the proton.

Precision tests of Standard Model: magnetic moments

• Dirac equation predicts:
$$\mu = \frac{e}{m}$$

• Electron magnetic moment known to phantastic precision:

$$\begin{split} \mu_{\rm e} &= \frac{\rm e}{m_{\rm e}} \times \ 1.001 \ 159 \ 652 \ 180 \ 76(27) \\ \text{Experimental uncertainty only shows up in the } 13^{\rm th} \ \text{decimal.} \end{split}$$

Precision tests of Standard Model: magnetic moments

• Dirac equation predicts:
$$\mu = -\frac{e}{m}$$

• Electron magnetic moment known to phantastic precision:

$$\mu_{e} = \frac{e}{m_{e}} \times 1.001 \ 159 \ 652 \ 180 \ 76(27)$$

Experimental uncertainty only shows up in the 13th decimal.

• Leading correction in QED:

Schwinger 1948

$$\mu = \frac{e}{m} \left\{ 1 + \frac{e^2}{8\pi^2} + O(e^4) \right\}$$

$$\frac{e^2}{8\pi^2} = 0.00116...$$

From the Bohr Model to the Standard Model Qualitative aspects of the Standard Model

Contribution from higher orders

- Accuracy of prediction is limited by uncertainty in e.
- Contributions from QCD are too small to test our understanding of the strong interaction with μ_e.
- Same applies to contributions from QFD.
- μ_e does offer a test of QED at breathtaking precision: a difference can be seen only in the 12th decimal Experiment – Theory = -1.09 \pm 0.83 \cdot 10⁻¹²

From the Bohr Model to the Standard Model Qualitative aspects of the Standard Model

Magnetic moment of the muon

• Experiment:
$$\mu_{\mu} = \frac{\mathbf{e}}{\mathbf{m}_{\mu}} \times 1.001 \ 165 \ 920 \ 89(63)$$

experimental uncertainty shows up in the 10th decimal

2013

• Theory:
$$\mu_{\mu} = \frac{e}{m_{\mu}} \times 1.001 \ 165 \ 917 \ 95(62)$$

- Contributions from QCD and QFD do matter here:
 - QCD: hadronic vac. pol. ~100×exp. error
 - QCD: light-by-light scattering $\sim 2 \times \exp$. error
 - QFD: $\sim 2 \times exp. error$
- Experiment Theory amounts to 4.7×exp. error
- \Rightarrow Standard model prediction for μ_{μ} is off by 3.3 σ .

Puzzling results for muonic hydrogen

- Hydrogen atoms formed with p + e or with p + μ. Lamb shift can be measured very accurately.
- Main uncertainty in the SM prediction for Lamb shift stems from the radius of the charge distribution in the proton: r_p . Can use the measurement of the Lamb shift to determine r_p . Independently, r_p can be measured in $e + p \rightarrow e + p$.
- Juicy discrepancy in results for proton charge radius:

p + **e**
$$\mathbf{r_p} = 0.8775(51) \cdot 10^{-15} \text{ m}$$
 CODATA 2010
p + μ $\mathbf{r_p} = 0.84087(39) \cdot 10^{-15} \text{ m}$ PSI 2013

Totally unexpected, no plausible explanation so far. The quoted numbers amount to a discrepancy of 7 σ !

Implication ?

Three possibilities, for μ_{μ} as well as for $\mathbf{r_p}$:

- Physics beyond the Standard Model ? Lepton universality: {e, ν_e}, {μ, ν_μ}, {τ, ν_τ} only differ in the interaction with the Higgs particles.
- Error in the evaluation of the SM prediction ?
- Did something go wrong with the experiment ?

Hints at deviations from the Standard Model are very rare. Need to treat them with care – prejudice does not help.

Summary

IG Physik, Gesellschaft mit besonderer Haftung, advertisement ca. 1973

Im Falle eines Falles klebt ein EICHFELD wirklich alles !

Bezugsquellennachweis

J. C. Maxwell, Royal Society Transactions 155 (1865) 459 H. Weyl, Z. Phys. 56 (1929) 330

C. N .Yang and R. Mills, Phys. Rev. 96 (1954) 191

▲ 同 ▶ → 三 ▶

- A - E - M

Short distance

- At short distance (1 TeV $\leftrightarrow 2 \cdot 10^{-19}$ m) all of the forces obey the inverse square law. $V = \text{constant} \times \frac{\hbar c}{r}$ interaction energy
- The constant is a pure number.
- \Rightarrow Interaction strength is fixed by 3 pure numbers.

e.m.	weak	strong
e ²	\mathbf{g}_{w}^{2}	\mathbf{g}_{s}^{2}
$\overline{4\pi}$	$\frac{4\pi}{4\pi}$	$\frac{a_3}{4\pi}$

Long distance

- Vacuum amplifies the interaction between quarks
- ⇒ Colour is confined
 - Vacuum is opaque for the gauge fields of SU(2).
- \Rightarrow At low energies, the weak interaction freezes in.
 - Heavy quarks and leptons decay into the light ones. In stable matter only **e**, **u**, **d**.
 - At low energies, Standard Model reduces to QED + QCD: precision theory for the structure of matter.
 Weak interaction only generates tiny, calculable corrections.

From the Bohr Model to the Standard Model Qualitative aspects of the Standard Model

Beyond the Standard Model

Gravity ∩ Quantum theory = Ø
 Standard Model is only an effective theory for 'low' energies.
 Quite a few layers of structure seen at the present resolution.
 No further layers all the way to ℓ_{Planck} ?

$$\ell_{ extsf{Planck}} = \sqrt{rac{{f G}\,{f h}}{{f c}^3}} = 1.6\,\cdot\,10^{-35}$$
 m

From the Bohr Model to the Standard Model Qualitative aspects of the Standard Model

Beyond the Standard Model

Gravity ∩ Quantum theory = Ø
 Standard Model is only an effective theory for 'low' energies.
 Quite a few layers of structure seen at the present resolution.
 No further layers all the way to ℓ_{Planck} ?

$$\ell_{\mbox{\tiny Planck}} = \sqrt{rac{{f G}\,{f h}}{{f c}^3}} = 1.6\,\cdot\,10^{-35}$$
 m

- Astronomical observations: ∃ Dark Energy ? ∃ Dark Matter ?
- Anything that carries energy generates gravity.
 Why does gravity not take notice of the Higgs condensate ?

From the Bohr Model to the Standard Model Qualitative aspects of the Standard Model

Beyond the Standard Model

Gravity ∩ Quantum theory = Ø
 Standard Model is only an effective theory for 'low' energies.
 Quite a few layers of structure seen at the present resolution.
 No further layers all the way to ℓ_{Planck} ?

$$\ell_{\mbox{\tiny Planck}} = \sqrt{rac{{f G}\,{f h}}{{f c}^3}} = 1.6\,\cdot\,10^{-35}$$
 m

- Astronomical observations: ∃ Dark Energy ? ∃ Dark Matter ?
- Anything that carries energy generates gravity.
 Why does gravity not take notice of the Higgs condensate ?
- Why do baryons dominate the visible matter in our vicinity ? Difficult to understand if the proton does not decay – does it ? CP violation is necessary for baryogenesis, too. Is observed and accounted for in SM, but not understood.

Beyond the Standard Model

- Supersymmetric extensions of the Standard Model do contain candidates for Dark Matter, but where are the super-partners ?
- Why are there so many lepton and quark flavours ?
- Origin of the bizarre mass pattern of the leptons and quarks ?

Beyond the Standard Model

- Supersymmetric extensions of the Standard Model do contain candidates for Dark Matter, but where are the super-partners ?
- Why are there so many lepton and quark flavours ?
- Origin of the bizarre mass pattern of the leptons and quarks ?

Standard Model becomes really beautiful if all fields except the quarks and gluons are chopped off: <u>QCD</u> with massless quarks. This is how theories should be: does not contain a single dimensionless free parameter to be adjusted to observation. Does explain the occurrence of mesons and baryons and describes their properties, albeit only approximately.

Beyond the Standard Model

- Supersymmetric extensions of the Standard Model do contain candidates for Dark Matter, but where are the super-partners ?
- Why are there so many lepton and quark flavours ?
- Origin of the bizarre mass pattern of the leptons and quarks ?

Standard Model becomes really beautiful if all fields except the quarks and gluons are chopped off: <u>QCD</u> with massless quarks. This is how theories should be: does not contain a single dimensionless free parameter to be adjusted to observation. Does explain the occurrence of mesons and baryons and describes their properties, albeit only approximately.

Compared to this, the Standard Model leaves much to be desired.