The lowest resonance of QCD

H. Leutwyler

$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

Novosibirsk, 28 Feb. 2006

$\pi\pi$ interaction

Plays a crucial role whenever the strong interaction is involved at low energies

Example: Standard model prediction for muon magnetic moment

- Main experiments on $\pi\pi$ scattering were done in the seventies. What's new ?
 - Significant theoretical progress, based on ChPT + dispersion theory

New precision data:

- $K \to \pi \pi \ell \nu$ E865Brookhavenpionic atomsDIRACCERN $K \to 3\pi$ NA48/2CERN
- Lattice results on M_{π} , F_{π} , a_0^2 , $\langle r^2
 angle_s$

Analyticity and crossing

- $\pi\pi$ scattering is special: crossed channels are identical
- $\Rightarrow \operatorname{Re} T(s,t) \text{ can be represented as a twice subtracted} \\ \text{dispersion integral over Im } T(s,t) \text{ in physical region} \\ \text{S.M. Roy 1971} \end{aligned}$
- The 2 subtraction constants can be identified with the S-wave scattering lengths:

 $a_0^0 \;,\; a_0^2 \stackrel{\leftarrow}{\leftarrow} {}_{ ext{angular momentum}}^{ ext{isospin}}$

Representation leads to dispersion relations for the individual partial waves: Roy equations

Roy equations

- Pioneering work on the physics of the Roy equations: Basdevant, Froggatt & Petersen 1974
- Dispersion integrals converge rapidly (2 subtractions)
- \Rightarrow Crude phenomenological information on Im T(s,t) for energies above 800 MeV suffices
- \Rightarrow Given a_0^0, a_0^2 , the scattering amplitude can be calculated to within small uncertainties

Ananthanarayan, Colangelo, Gasser & L. 2001 Descotes, Fuchs, Girlanda & Stern 2002

- $\Rightarrow a_0^0, a_0^2$ are the essential parameters at low energy
- Main problem in early work: a_0^0, a_0^2 poorly known Experimental information near threshold is meagre

Low energy theorems

- Chiral perturbation theory provides the missing piece: theoretical prediction for a_0^0, a_0^2 Weinberg 1966, Gasser & L. 1984, Bijnens, Colangelo, Ecker, Gasser & Sainio 1996
- Most accurate results for a₀⁰, a₀² are obtained by matching the chiral and dispersive representations near the center of the Mandelstam triangle

Colangelo, Gasser & L. 2001

In combination with the low energy theorems for a_0^0, a_0^2 , the dispersion relations for the partial waves fix the $\pi\pi$ scattering amplitude to an incredible degree of accuracy

Predictions for the S-wave $\pi\pi$ scattering lengths

Sizeable corrections in a_0^0 , while a_0^2 nearly stays put

Tests of the predictions for a_0^0, a_0^2 : experiment & lattice

Theory is ahead of experiment ...

The σ

Work done in collaboration with I. Caprini and G. Colangelo, hep-ph/0512364

- Does QCD have a resonance near threshold ?
- Why care ?
 - Concerns the nonperturbative domain of QCD
 - Quark and gluon degrees of freedom useless there
 - ⇒ Understanding very poor, pattern of energy levels ?
 - Lowest resonance: σ ? ρ ?
- Resonance ↔ pole on second sheet
 - Poles are universal
 - Pole position is unambiguous, even if width is large
 - Where is the pole closest to the origin ?

Citation: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) and 2005 partial update for edition 2006 (URL: http://pdg.lbl.gov)

f_0 (600) T-MATRIX POLE \sqrt{s}

Note that $\Gamma \approx 2 \text{ Im}(\sqrt{s_{\text{pole}}})$.

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
(400-1200)i(300-500) OUR ESTIMATE			
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$			
$(541 \pm 39) - i(252 \pm 42)$	¹ ABLIKIM	04A BES2	$J/\psi \rightarrow \omega \pi^+ \pi^-$
$(528 \pm 32) - i(207 \pm 23)$	² GALLEGOS	04 RVUE	Compilation
$(440 \pm 8) - i(212 \pm 15)$	³ PELAEZ	04A RVUE	$\pi \pi \rightarrow \pi \pi$
$(533 \pm 25) - i(247 \pm 25)$	⁴ BUGG	03 RVUE	
532 — <i>i</i> 272	BLACK	01 RVUE	$\pi^0 \pi^0 \rightarrow \pi^0 \pi^0$
$(470 \pm 30) - i(295 \pm 20)$	⁵ COLANGELO	01 RVUE	$\pi \pi \rightarrow \pi \pi$
(535 + 48) - i(155 + 76)	⁶ ISHIDA	01	$\Upsilon(3S) \rightarrow \Upsilon \pi \pi$
$610 \pm 14 - i620 \pm 26$	⁷ SUROVTSEV	01 RVUE	$\pi \pi \rightarrow \pi \pi, K \overline{K}$
$(558^{+34}_{-27}) - i(196^{+32}_{-41})$	ISHIDA	00в	$p \overline{p} \rightarrow \pi^0 \pi^0 \pi^0$
445 — <i>i</i> 235	HANNAH	99 RVUE	π scalar form factor
$(523 \pm 12) - i(259 \pm 7)$	KAMINSKI	99 RVUE	$\pi \pi ightarrow \pi \pi$, $K \overline{K}$, $\sigma \sigma$
442 — <i>i</i> 227	OLLER	99 RVUE	$\pi \pi \rightarrow \pi \pi, K \overline{K}$
469 — <i>i</i> 203	OLLER	99b RVUE	$\pi \pi ightarrow \pi \pi, K \overline{K}$
445 - i221	OLLER	99C RVUE	$\pi \pi ightarrow \pi \pi$, K \overline{K} , $\eta \eta$
$(1530^+_{-250})^{-i}(560 \pm 40)$	ANISOVICH	98b RVUE	Compilation
420 - i 212	LOCHER	98 RVUE	$\pi\pi ightarrow\pi\pi$, $K\overline{K}$
$(602 \pm 26) - i(196 \pm 27)$	⁸ ISHIDA	97	$\pi \pi \rightarrow \pi \pi$
$(537 \pm 20) - i(250 \pm 17)$	⁹ KAMINSKI	97B RVUE	$\pi \pi \rightarrow \pi \pi, K \overline{K}, 4\pi$
470 — <i>i</i> 250	^{10,11} TORNQVIST	96 RVUE	$\pi\pi \rightarrow \pi\pi, K\overline{K}, K\pi, \ n\pi$
\sim (1100 – <i>i</i> 300)	AMSLER	95b CBAR	$\overline{p}p \rightarrow 3\pi^0$
400 - i500	^{11,12} AMSLER	95D CBAR	$\overline{p}p \rightarrow 3\pi^0$
1100 - i137	^{11,13} AMSLER	95D CBAR	$\overline{p}p \rightarrow 3\pi^0$
387 — <i>i</i> 305	^{11,14} JANSSEN	95 RVUE	$\pi\pi \to \pi\pi, K\overline{K}$
525 — <i>i</i> 269	¹⁵ ACHASOV	94 RVUE	$\pi \pi \rightarrow \pi \pi$
$(506 \pm 10) - i(247 \pm 3)$	KAMINSKI	94 RVUE	$\pi \pi \rightarrow \pi \pi, K \overline{K}$
370 – <i>i</i> 356	¹⁶ ZOU	94b RVUE	$\pi \pi ightarrow \pi \pi, K \overline{K}$
408 — <i>i</i> 342	^{11,16} ZOU	93 RVUE	$\pi \pi \rightarrow \pi \pi, K \overline{K}$
870 — <i>i</i> 370	^{11,17} AU	87 RVUE	$\pi \pi \rightarrow \pi \pi, K \overline{K}$
470 <i>- i</i> 208	¹⁸ BEVEREN	86 RVUE	$\pi \pi \rightarrow \pi \pi, K \overline{K}, \eta \eta, \dots$
$(750 \pm 50) {-}i(450 \pm 50)$	¹⁹ ESTABROOKS	579 RVUE	$\pi \pi \rightarrow \pi \pi, K \overline{K}$
$(660 \pm 100) - i(320 \pm 70)$	PROTOPOP	73 HBC	$\pi \pi \rightarrow \pi \pi, K \overline{K}$
650 — <i>i</i> 370	²⁰ BASDEVANT	72 RVUE	$\pi \pi \rightarrow \pi \pi$

Model independent determination of the pole

- All of the results quoted by the PDG are obtained by
 (a) parametrizing the data for real values of s
 (b) continuing this parametrization analytically in s
- ⇒ Result is sensitive to the parametrization used

Model independent determination of the pole

- All of the results quoted by the PDG are obtained by
 (a) parametrizing the data for real values of s
 (b) continuing this parametrization analytically in s
- \Rightarrow Result is sensitive to the parametrization used
- We found a model independent method:
 - 1. Poles on second sheet are zeros on first sheet
 - 2. The Roy equations are valid for complex values of *s*, in a limited region of the first sheet
 - \Rightarrow Exact representation of the partial waves in terms of observable quantities, valid for complex values of s

Model independent determination of the pole

- All of the results quoted by the PDG are obtained by
 (a) parametrizing the data for real values of s
 (b) continuing this parametrization analytically in s
- \Rightarrow Result is sensitive to the parametrization used
- We found a model independent method:
 - 1. Poles on second sheet are zeros on first sheet
 - 2. The Roy equations are valid for complex values of *s*, in a limited region of the first sheet
 - \Rightarrow Exact representation of the partial waves in terms of observable quantities, valid for complex values of s
 - 3. Can evaluate this representation to good precision and determine the zeros numerically

Pole on second sheet \leftrightarrow zero on first sheet

Pole on second sheet \leftrightarrow zero on first sheet

•
$$S_0^0(s) = \eta_0^0(s) \exp 2i\delta_0^0(s)$$
 s-plane
 $S_0^0(s)$ is analytic in the cut plane $\longrightarrow_0^{0} 4M_{\pi}^{\frac{physical region}{4}}$
• For $0 < s < 4M_{\pi}^2$, $S_0^0(s)$ is real
 $\Rightarrow S_0^0(s^*) = S_0^0(s)^*$
 x in elastic interval: $S_0^0(x \pm i\epsilon) = \exp \pm 2i\delta_0^0(x)$

Pole on second sheet \leftrightarrow zero on first sheet

•
$$S_0^0(s) = \eta_0^0(s) \exp 2i\delta_0^0(s)$$

 $S_0^0(s)$ is analytic in the cut plane $= 0^{0} 4M_{\pi}^{\frac{p+ysical region}{2}}$
• For $0 < s < 4M_{\pi}^2$, $S_0^0(s)$ is real
 $\Rightarrow S_0^0(s^*) = S_0^0(s)^*$
 x in elastic interval: $S_0^0(x \pm i\epsilon) = \exp \pm 2i\delta_0^0(x)$
• Second sheet is reached by continuation across the elastic interval of the right hand cut
 $S_0^0(x - i\epsilon)^H = S_0^0(x + i\epsilon) = 1/S_0^0(x - i\epsilon)$
Analyticity $\Rightarrow S_0^0(s)^H = 1/S_0^0(s)$ valid $\forall s$

Pole in $S_0^0(s)^{II} \iff$ zero in $S_0^0(s)$

$$S_0^0(s)\!=\!1+2\,i
ho\,t_0^0(s) \qquad
ho=\sqrt{1-4M_\pi^2/s}$$

$$\begin{split} S_0^0(s) = &1 + 2 \, i \rho \, t_0^0(s) \qquad \rho = \sqrt{1 - 4M_\pi^2/s} \\ t_0^0(s) = &a + (s - 4M_\pi^2) \, b + \int_{4M_\pi^2}^\infty ds' \left\{ K_0(s,s') \, \mathrm{Im} \, t_0^0(s') \right. \\ &+ K_1(s,s') \, \mathrm{Im} \, t_1^1(s') + \, K_2(s,s') \, \mathrm{Im} \, t_0^2(s') \right\} \\ &+ \text{ higher partial waves} \end{split}$$

$$\begin{split} S_0^0(s) = &1 + 2 \, i \rho \, t_0^0(s) \qquad \rho = \sqrt{1 - 4M_\pi^2/s} \\ t_0^0(s) = &a + (s - 4M_\pi^2) \, b + \int_{4M_\pi^2}^\infty ds' \left\{ K_0(s,s') \, \mathrm{Im} \, t_0^0(s') \right. \\ &+ K_1(s,s') \, \mathrm{Im} \, t_1^1(s') + \, K_2(s,s') \, \mathrm{Im} \, t_0^2(s') \right\} \\ &+ \text{higher partial waves} \end{split}$$

The subtraction constants are determined by a_0^0, a_0^2 :
 $a = a_0^0, \quad b = (2a_0^0 - 5a_0^2)/(12M_\pi^2)$

$$\begin{split} S_0^0(s) = &1 + 2 \, i \rho \, t_0^0(s) \qquad \rho = \sqrt{1 - 4M_\pi^2/s} \\ t_0^0(s) = &a + (s - 4M_\pi^2) \, b + \int_{4M_\pi^2}^\infty ds' \left\{ K_0(s,s') \, \mathrm{Im} \, t_0^0(s') \right. \\ &+ K_1(s,s') \, \mathrm{Im} \, t_1^1(s') + \, K_2(s,s') \, \mathrm{Im} \, t_0^2(s') \right\} \\ &+ \text{higher partial waves} \end{split}$$

- The subtraction constants are determined by a_0^0, a_0^2 :
 $a = a_0^0, \quad b = (2a_0^0 5a_0^2)/(12M_\pi^2)$
- The kernels are elementary functions, e.g. $K_0(s,s') = \underbrace{\frac{1}{\pi(s'-s)}}_{r.h.cut} + \underbrace{\frac{2\ln\{(s+s'-4M_{\pi}^2)/s'\}}{3\pi(s-4M_{\pi}^2)} - \frac{5s'+2s-16M_{\pi}^2}{3\pi s'(s'-4M_{\pi}^2)}}_{l.h.cut}$

$$\begin{split} S_0^0(s) = &1 + 2 \, i \rho \, t_0^0(s) \qquad \rho = \sqrt{1 - 4M_\pi^2/s} \\ t_0^0(s) = &a + (s - 4M_\pi^2) \, b + \int_{4M_\pi^2}^\infty ds' \left\{ K_0(s,s') \, \mathrm{Im} \, t_0^0(s') \right. \\ &+ K_1(s,s') \, \mathrm{Im} \, t_1^1(s') + \, K_2(s,s') \, \mathrm{Im} \, t_0^2(s') \right\} \\ &+ \text{higher partial waves} \end{split}$$

- The subtraction constants are determined by a_0^0, a_0^2 :
 $a = a_0^0, \quad b = (2a_0^0 5a_0^2)/(12M_\pi^2)$
- The kernels are elementary functions, e.g. $K_0(s,s') = \underbrace{\frac{1}{\pi(s'-s)}}_{r.h.cut} + \underbrace{\frac{2\ln\{(s+s'-4M_\pi^2)/s'\}}{3\pi(s-4M_\pi^2)} - \frac{5s'+2s-16M_\pi^2}{3\pi s'(s'-4M_\pi^2)}}_{l.h.cut}$
- Left hand cut is essential for convergence: $K_0(s,s') \sim 1/{s'}^3$ for large s'

Domain of validity of Roy equations

Roy derived his equations from first principles for real energies in the interval $-4M_{\pi}^2 < s < 60M_{\pi}^2$

Domain of validity of Roy equations

- Roy derived his equations from first principles for real energies in the interval $-4M_{\pi}^2 < s < 60M_{\pi}^2$
- Equations are valid for complex s in a limited region of the first sheet
 Caprini, Colangelo & L. 2005

Domain of validity of Roy equations

- Roy derived his equations from first principles for real energies in the interval $-4M_{\pi}^2 < s < 60M_{\pi}^2$
- Equations are valid for complex s in a limited region of the first sheet
 Caprini, Colangelo & L. 2005

 \Rightarrow Exact representation for $S_0^0(s)$ in this region Do not need to parametrize the amplitude

Insert our solutions of the Roy equations For the central solution, $S_0^0(s)$ has two pairs of zeros in the region of validity of the representation:

 $s = (6.2 \pm i\, 12.3)\, M_\pi^2 ~~\sigma$

 $s = (51.4 \pm i\, 1.4)\, M_\pi^2 \, f_0(980)$

Insert our solutions of the Roy equations For the central solution, $S_0^0(s)$ has two pairs of zeros in the region of validity of the representation:

$$egin{aligned} s &= (6.2 \pm i\, 12.3)\,M_\pi^2 & \sigma \ s &= (51.4 \pm i\, 1.4)\,M_\pi^2 & f_0(980) \end{aligned}$$

Insert our solutions of the Roy equations For the central solution, $S_0^0(s)$ has two pairs of zeros in the region of validity of the representation:

$$egin{aligned} s &= (6.2 \pm i\,12.3)\,M_\pi^2 & \sigma \ s &= (51.4 \pm i\,1.4)\,M_\pi^2 & f_0(980) \end{aligned}$$

⇒ 1. Lowest resonance of QCD has vacuum quantum numbers

Insert our solutions of the Roy equations For the central solution, $S_0^0(s)$ has two pairs of zeros in the region of validity of the representation:

 $s = (6.2 \pm i \, 12.3) \, M_\pi^2 \, \sigma \ s = (51.4 \pm i \, 1.4) \, M_\pi^2 \, f_0(980)$

⇒ 1. Lowest resonance of QCD has vacuum quantum numbers
2. Pole on lower half of sheet II occurs in vicinity of

$$egin{aligned} m_\sigma &= 441 - i\,272\, ext{MeV}\ &= M_\sigma - rac{i}{2}\Gamma_\sigma \end{aligned}$$

- Results depend on phenomenological input used when solving the Roy equations, subject to uncertainties Can follow error propagation explicitly
- Pole position of σ mainly depends on 3 input variables:
 $a_0^0, a_0^2, \delta_A \equiv \delta_0^0$ (800 MeV)
 - Substantial uncertainties in phenomenology of δ_A
 - Use the range: $\delta_A = 82.3^{\circ} {+10^{\circ}}_{-4^{\circ}}$

Noise from remaining input variables is very small:
 $m_{\sigma}^0 = (441 \pm 4) - i(272 \pm 6)$ MeV

Noise from remaining input variables is very small:

$$m_{\sigma}^0 = (441 \pm 4) - i(272 \pm 6) \; {
m MeV}$$

• Values of a_0^0, a_0^2, δ_A are crucial:

$$egin{aligned} \Delta m_{\sigma} &= (-2.4 + i\,3.8) \; rac{a_0^0 - 0.22}{0.005} \ &+ \; (0.8 - i\,4.0) \; rac{a_0^2 + 0.0444}{0.001} \ &+ \; (5.3 + i\,3.3) \; rac{\delta_A - 82.3}{3.4} \end{aligned}$$

numbers in MeV

Noise from remaining input variables is very small:

$$m_{\sigma}^0 = (441 \pm 4) - i(272 \pm 6) \; {
m MeV}$$

• Values of a_0^0, a_0^2, δ_A are crucial:

$$egin{aligned} \Delta m_{\sigma} &= (-2.4 + i \, 3.8) \; rac{a_0^0 - 0.22}{0.005} \ &+ \; (0.8 - i \, 4.0) \; rac{a_0^2 + 0.0444}{0.001} \ &+ \; (5.3 + i \, 3.3) \; rac{\delta_A - 82.3}{3.4} \end{aligned}$$
 number

numbers in MeV

Final result: insert the predictions for a_0^0 , a_0^2 , use the phenomenological range for δ_A and add errors up:

$$m_{\sigma} = 441 {+16 \atop -8} \ -i \ 272 {+9 \atop -13} \ {
m MeV}$$

Comparison with compilation of PDG

Vicinity of the pole

Results for $\text{Re}[m_{\sigma}]$ and $\text{Im}[m_{\sigma}]$ are strongly correlated

Ignore the theoretical predictions for a_0^0, a_0^2

- Replace the low energy theorems for a_0^0, a_0^2 by the experimental results from E865, DIRAC and NA48
- $a_0^0, a_0^2 \in$ universal band

Why are our errors so incredibly small?

- The σ occurs at low energies
- At low energies, the subtraction term dominates

$$t_0^0(s) \simeq a_0^0 + (2a_0^0 - 5a_0^2) \frac{(s - 4M_\pi^2)}{12M_\pi^2}$$

Why are our errors so incredibly small?

- The σ occurs at low energies
- At low energies, the subtraction term dominates

$$t_0^0(s) \simeq a_0^0 + (2a_0^0 - 5a_0^2) rac{(s - 4M_\pi^2)}{12M_\pi^2}$$

Insert low energy theorem for a_0^0, a_0^2

 \Rightarrow Roy equation reduces to Weinberg formula

$$t_0^0(s) \simeq rac{(2s-M_\pi^2)}{32\pi F_\pi^2}$$

Dispersion integrals only represent a correction

At low energies, the subtraction term dominates

$$s = (0.41 \pm 0.06) \, M_\pi^2 \,$$
 Adler zero $s = (6.2 - i \, 12.3) \, M_\pi^2 \,$ pole from σ

• Approximate $t_0^0(s)$ with the Weinberg formula $t_0^0(s)=rac{(2s-M_\pi^2)}{32\pi F_\pi^2}$

Where are the zeros of $S_0^0(s)$ in this approximation ?

• Approximate $t_0^0(s)$ with the Weinberg formula

$$t_0^0(s) = rac{(2s - M_\pi^2)}{32\pi F_\pi^2}$$

Where are the zeros of $S_0^0(s)$ in this approximation ?

$$1+2\,i\,\sqrt{1-4M_\pi^2/s}\;t_0^0(s)=0$$

• Approximate $t_0^0(s)$ with the Weinberg formula

$$t_0^0(s) = rac{(2s-M_\pi^2)}{32\pi F_\pi^2}$$

Where are the zeros of $S_0^0(s)$ in this approximation ?

$$1+2\,i\,\sqrt{1-4M_\pi^2/s}\;t_0^0(s)=0$$

 \Rightarrow Cubic equation for s

 $\,\,$ Pair of complex zeros, $m_\sigma=365-i\,291~{
m MeV}$

• Approximate $t_0^0(s)$ with the Weinberg formula

$$t_0^0(s) = rac{(2s-M_\pi^2)}{32\pi F_\pi^2}$$

Where are the zeros of $S_0^0(s)$ in this approximation ?

$$1+2\,i\,\sqrt{1-4M_\pi^2/s}\;t_0^0(s)=0$$

 \Rightarrow Cubic equation for s

- $\,\,$ Pair of complex zeros, $m_\sigma=365-i\,291~{
 m MeV}$
- Correction from higher orders amounts to

$$\Delta m_{\sigma} = 76 \, {+16 \atop -8} \, + i \, 19 \, {+9 \atop -13} \, {
m MeV}$$

For the quantity that counts, the accuracy is modest

• Approximate $t_0^0(s)$ with the Weinberg formula

$$t_0^0(s) = rac{(2s-M_\pi^2)}{32\pi F_\pi^2}$$

Where are the zeros of $S_0^0(s)$ in this approximation ?

$$1+2\,i\,\sqrt{1-4M_\pi^2/s}\;t_0^0(s)=0$$

 \Rightarrow Cubic equation for s

- $\,\,$ Pair of complex zeros, $m_\sigma=365-i\,291~{
 m MeV}$
- Correction from higher orders amounts to

$$\Delta m_{\sigma} = 76 \, {+16 \atop -8} \, + i \, 19 \, {+9 \atop -13} \, {
m MeV}$$

For the quantity that counts, the accuracy is modest

• Real zero on sheet II, near s = 0 (full amplitude has kinematic singularity: vanishes on sheet II at s = 0).

Conclusion

Low energy pion physics: theory ahead of experiment

- Precision experiments carried out and under way
- Lattice makes slow, but steady progress
- So far all tests confirm the theory
- Application to pion e.m. form factor, hadronic contributions to muon g-2 \rightarrow talk by G. Colangelo

Conclusion

Low energy pion physics: theory ahead of experiment

- Precision experiments carried out and under way
- Lattice makes slow, but steady progress
- So far all tests confirm the theory
- Application to pion e.m. form factor, hadronic contributions to muon g-2 → talk by G. Colangelo
- Limitations of our approach
 - Calculations cannot be done on back of an envelope
 - Method only covers low energies
 - So far, only $\pi\pi$ scattering and form factors $J/\psi \rightarrow \omega\pi\pi$, $D \rightarrow 3\pi$, πK , κ , ... ??

Conclusion

- Model independent method for analytic continuation
 - The lowest resonance of QCD occurs at

$$M_{\sigma} = 441 {+16 \atop -8}$$
 MeV $\Gamma_{\sigma} = 544 {+18 \atop -25}$ MeV and carries vacuum guantum numbers

- Crossing symmetry plays an essential role: Fixes contributions from left hand cut Ensures fast convergence, low energy dominance
- Pole occurs at low value of s, closer to left hand cut than to singularities from $K\bar{K}$, $f_0(980)$
- Result for Γ_{σ} relies on theory for a_0^2 Experiments concerning a_0^2 would be most welcome